Wednesday, November 17th 2021
Qualcomm Says PC Transition to Arm-based Processors is Certain, to Launch High-Performance SoCs in 2023
Qualcomm has been in the game of creating SoCs for the PC market with the company's Snapdragon lineup. These processors mainly were beefed-up versions of their mobile designs and were based on the Arm instruction set architecture (ISA). Microsoft has backed this effort by creation Windows-on-Arm (WoA) project that enables the Windows OS to operate on Arm processors. However, up until now, Qualcomm's designs were not very powerful as they represented a relatively moderate approach to the problem and almost made no sense of purchase compared to the standard laptops equipped with x86 processors from AMD and Intel. This is about to change.
According to the news from Investor Day yesterday, Qualcomm is preparing high-performance Arm SoCs for the PC market. The company has recently acquired Nuvia Inc., a startup focused on creating novel IPs based on Arm ISA. And this is what Qualcomm will use in building its next-generation PC processors. As the company plans, in August of 2022, it should start sampling OEM partners with these new chips, and we will be seeing them in consumers' hands in early 2023. If everything goes as planned, this should represent direct competition to AMD, Intel, and now Apple in the high-end SoC market. After PCs, the company plans to tackle datacenter, mobile, and automotive market.
Sources:
via Tom's Hardware, Andreas Schilling (Image)
According to the news from Investor Day yesterday, Qualcomm is preparing high-performance Arm SoCs for the PC market. The company has recently acquired Nuvia Inc., a startup focused on creating novel IPs based on Arm ISA. And this is what Qualcomm will use in building its next-generation PC processors. As the company plans, in August of 2022, it should start sampling OEM partners with these new chips, and we will be seeing them in consumers' hands in early 2023. If everything goes as planned, this should represent direct competition to AMD, Intel, and now Apple in the high-end SoC market. After PCs, the company plans to tackle datacenter, mobile, and automotive market.
53 Comments on Qualcomm Says PC Transition to Arm-based Processors is Certain, to Launch High-Performance SoCs in 2023
And even if it were true Mircrosoft sure doesn't thinks so, the x86 emulation on the ARM branch of Windows is sub-par, you can only run 32-bit applications and even then it's full of issues. Plus, it doesn't look like it will improve anytime soon and without that ARM has no future on PCs.
They've been teasing Windows on ARM demos with MS for half-a-decade now, yet still ARM can only be found in only in few chromebooks and even fewer niche laptops and hybrids...
I'm not sure what's happening with this whole thing, but it all kinda died down. QC stopped pushing X1, MS moved x64 emulation to Win11, Snapdragon ultrabooks went into hiding, and now - delays. I guess someone missed the whole Apple M1 ordeal. It can work and it works, and given a couple of years devs will get a hang of creating native ARM apps for desktops.
Heck, even old MS demos were quite impressive (though 32-bit only), and that's not including the fact that quite a few native Windows on ARM ports of popular software have been released since then.
Theres no reason Intels E-core concept cant become mainstream, with some highly optimised efficient cores taking care of the OS and lightweight tasks, with performance cores smashing out the big stuff as needed.
Need a laugh emoji
If arm wasn't SOC maybe ...
Eg upgradable processors motherboards etc...
PC is about all the parts and bits and pieces you can do.
Buying a prebuilt SOC is pretty bland and boring.
Also big risc of the 90's .... Yet we are still using X86
I do think we're going to be looking at such baby steps, once the stuff is out in the wild, that nobody will care.
People want stuff that 'just works'. x86 - just works. And it is so expansive in what it offers, ARM 'content' can't hold a candle to it, even with a dozen App Stores feeding it. The vast majority of stuff people do on ARM is also not productivity, or at least 'less productive'. People know ARM as 'smartphone'.
Inevitably, if ARM wants to either emulate or mimic x86, its going to be the same thing, equally fat and bloated and the advantage will still be architectural rather than choosing 'this or that'. Yay it can work with cloud, but that also means nothing is truly ARM, it just works on it as it could elsewhere.
ARM gets there when we feel it has feature AND content parity. Anyone saying it will prior to that, is dreaming.
Hell, what if future chipsets had ARM E-cores inside them (So a higher end mobo had faster E-cores) and would boot and run the OS just fine like that, and we slapped in performance cores just like we do GPU's.
In the real world not designed by Apple, that won't fly.
The E cores have a big future though. I was very skeptical beforehand, but their performance is very convincing, as is their efficiency. I'm looking forward to seeing a 2P+4E or even 2P+8E mobile ADL design. That would be really interesting. I get what you're trying to say, but MacOS is very much the real world. It's a semi-controlled environment, but one that runs a wide variety of real software, and it works there too.
Heck, the fact that you can run Windows in Parallels on an M1 and have it kind of work decently is downright mind-boggling.
So its the real world, from the Apple perspective, where the margins are huge enough to keep fine tuning software to cater to hardware. A somewhat different economic reality. Compared to a wide invasion of ARM in x86, its an entirely different dimension.
By the way, I still don't understand how Apple got away with x86 emulation, Intel cracked down on every big corporation who wanted to do that in the past, like Nvidia and even Microsoft. You'd think they would do it to the one company where it would actually matter.
Zen3 at 20W should run at 5GHz, Golden Cove at 50+W runs at 5.2-5.3GHz, both are on a quite steep curve or at the end of reasonable curve at that point. At 11W Zen3 should be around 4.2GHz and Golden Cove at around 3.9GHz.
Also relevant - TSMC claims 20% more performance or 40% less power for N5 over N7. Looking at this angle - and only at this angle - Nvidia buying ARM might actually be very beneficial. Nvidia should have both the resources and knowhow to make that happen and software support is their strong side. ARM will now have to contend with Gracemont and soon Zen4c/Zen4e. Outside Apple that picture is not looking too rosy.