Friday, February 18th 2022
Intel Raptor Lake with 24 Cores and 32 Threads Demoed
When Intel announced the company's first hybrid design, codenamed Alder Lake, we expected to see more of such design philosophies in future products. During Intel's 2022 investor meeting day, the company provided insights into future developments, and a successor to Alder Lake is no different. Codenamed "Raptor Lake," it features a novel Raptor Cove P-core design that is supposed to bring significant IPC uplift from the previous generation of processors. Using Intel 7 processor node, Raptor Lake brings a similar ecosystem of features to Alder Lake, however, with improved performance across the board.
Perhaps one of the most exciting things to note about Raptor Lake is the advancement in core count, specifically the increase in E-cores. Instead of eight P-cores and eight E-cores like Alder Lake, the Raptor Lake design will retain eight P-cores and double the E-core count to 16. It was a weird decision on Intel's end; however, it surely isn't anything terrible. The total number of cores now jumps to 24, and the total number of threads reaches 32. Additionally, Raptor Lake will bring some additional overclocking improvement features and retain socket compatibility with Alder Lake motherboards. That means that, at worst, you would need to perform a BIOS update to get your previous system ready for new hardware. We assume that Intel has been working with software vendors and its engineering team to optimize core utilization for this next-generation processor, even though they have more E-cores present. Below, we can see Intel's demonstration of Raptor Lake running Blender and Adobe Premiere and the CPU core utilization.
Source:
via VideoCardz
Perhaps one of the most exciting things to note about Raptor Lake is the advancement in core count, specifically the increase in E-cores. Instead of eight P-cores and eight E-cores like Alder Lake, the Raptor Lake design will retain eight P-cores and double the E-core count to 16. It was a weird decision on Intel's end; however, it surely isn't anything terrible. The total number of cores now jumps to 24, and the total number of threads reaches 32. Additionally, Raptor Lake will bring some additional overclocking improvement features and retain socket compatibility with Alder Lake motherboards. That means that, at worst, you would need to perform a BIOS update to get your previous system ready for new hardware. We assume that Intel has been working with software vendors and its engineering team to optimize core utilization for this next-generation processor, even though they have more E-cores present. Below, we can see Intel's demonstration of Raptor Lake running Blender and Adobe Premiere and the CPU core utilization.
153 Comments on Intel Raptor Lake with 24 Cores and 32 Threads Demoed
I would prefer 14+0 instead of 8+16 as a desktop CPU
The question is about the sideeffect: half of the die will be e-cores, so cooling might be a problem.
If intel suddenly say 14th gen won't require mobo upgrade I will start praising her majesty the Queen Lisa Su though.
It could drop ddr4 support.
It's not.
Thinking that the future will bring configurations with 8+16, then 8+24 and then 8+32 cores, where only those 8 cores are performance cores, for me it's not something exciting. It's marketing. A cheap way for Intel to match the number of cores AMD is offering. Not much different than what AMD did in the past, where it was taking 1,5 core and was marketing it as a full dual core module. In both cases we have MARKETING. Feeling excitting about MARKETING, is not something that I like seeing in a technology site like TechPowerUp.
A 4 core cluster is about 1.4~1.5x P-core
A P-core comes as 755 x 1097 = 828,235 px2
4 E-cores come as 995 x 960 = 955,200 px2
I.e. four E-cores are just 15% larger than a single P-core and in terms of MT performance they obliterate a single P-core (which wastes a ton if its transistors on AVX-512 instructions).
Neat! Only took about 10 years :D
You are right.
It only allows 12 P-cores to be fitted symmetrically in the same space.