Wednesday, February 14th 2024
ASML High-NA EUV Twinscan EXE Machines Cost $380 Million, 10-20 Units Already Booked
ASML has revealed that its cutting-edge High-NA extreme ultraviolet (EUV) chipmaking tools, called High-NA Twinscan EXE, will cost around $380 million each—over twice as much as its existing Low-NA EUV lithography systems that cost about $183 million. The company has taken 10-20 initial orders from the likes of Intel and SK Hynix and plans to manufacture 20 High-NA systems annually by 2028 to meet demand. The High-NA EUV technology represents a major breakthrough, enabling an improved 8 nm imprint resolution compared to 13 nm with current Low-NA EUV tools. This allows chipmakers to produce transistors that are nearly 1.7 times smaller, translating to a threefold increase in transistor density on chips. Attaining this level of precision is critical for manufacturing sub-3 nm chips, an industry goal for 2025-2026. It also eliminates the need for complex double patterning techniques required presently.
However, superior performance comes at a cost - literally and figuratively. The hefty $380 million price tag for each High-NA system introduces financial challenges for chipmakers. Additionally, the larger High-NA tools require completely reconfiguring chip fabrication facilities. Their halved imaging field also necessitates rethinking chip designs. As a result, adoption timelines differ across companies - Intel intends to deploy High-NA EUV at an advanced 1.8 nm (18A) node, while TSMC is taking a more conservative approach, potentially implementing it only in 2030 and not rushing the use of these lithography machines, as the company's nodes are already developing well and on time. Interestingly, the installation process of ASML's High-NA Twinscan EXE 150,000-kilogram system required 250 crates, 250 engineers, and six months to complete. So, production is as equally complex as the installation and operation of this delicate machinery.
Sources:
Taipei Times, via Tom's Hardware
However, superior performance comes at a cost - literally and figuratively. The hefty $380 million price tag for each High-NA system introduces financial challenges for chipmakers. Additionally, the larger High-NA tools require completely reconfiguring chip fabrication facilities. Their halved imaging field also necessitates rethinking chip designs. As a result, adoption timelines differ across companies - Intel intends to deploy High-NA EUV at an advanced 1.8 nm (18A) node, while TSMC is taking a more conservative approach, potentially implementing it only in 2030 and not rushing the use of these lithography machines, as the company's nodes are already developing well and on time. Interestingly, the installation process of ASML's High-NA Twinscan EXE 150,000-kilogram system required 250 crates, 250 engineers, and six months to complete. So, production is as equally complex as the installation and operation of this delicate machinery.
13 Comments on ASML High-NA EUV Twinscan EXE Machines Cost $380 Million, 10-20 Units Already Booked
These are going to be some very clean cuts
Should we expect 7GHz?
Canon also wants a piece of the pie, but using a bit different approach. Hopefully someone picks up on it.
The US heavily invested into EUV and blocked Japanese companies out of all the government money and research. US was the world leader in lithography machines until Japanese lithography machines started winning outright. Japan leaned to proximity x-ray for the next big process. Japan later pivoted to EUV but it was too little too late. ASML benefited from this being allowed to participate in the EUV LLC and eventually buy SVG, buying their way into the US's research and dying lithography industry. ASML did pull off being able to completely commercialize it but they benefited from being able to dip into US and EU money. This is also why the US retains some control on ASML's EUV machines.
Huh, and looks like SVG was a late comer and maybe never really built much anyway - www.nytimes.com/1990/02/13/business/low-tech-company-in-high-tech-gamble.html
EDIT: Hehe, reading that EE Times article suggests the agreed commitments weren't upheld in the end. AFAIK, the production of equipment and primary components are all EU based. Certainly the equipment hasn't been assembled in USA like promised.